2008 Consumer Confidence Report THE WATER WE DRINK South Toledo Bend Water District

Public Water Supply ID # LA1085055

We're pleased to present to you the Annual Water Quality Report for the year 2008. This report is designed to inform you about the quality of water and services we deliver to you everyday. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the drinking quality of your water. Our water source is listed below:

Source Name	Source Water Type	Source Water
		Body Name
South Toledo Bend	Surface Water	Toledo Bend
Water System		

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

Microbial Contaminants – such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants – such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and Herbicides – which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

Organic Chemical Contaminants – including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive Contaminants – which can be naturally occurring or be the result of oil and gas production and mining activities.

A Source Water Assessment Plan (SWAP) is now available from our office. This plan is an assessment of a delineated area around our listed sources through which contaminates, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area, and a determination of the water supply's susceptibility to contamination by the identified potential sources. According to the Source Water Assessment Plan, our water system has a susceptibility rating of 'HIGH'. If you would like to review the Source Water Assessment Plan, please feel free to contact our office at the number provided in the following paragraph.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. South Toledo Bend Water District is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminates in water provided by Public Water Systems. Food and Drug Administration regulations establish

limits for contaminates in bottle water which must provide the same protection for public health. We are pleased to report that our drinking water is safe and meets Federal and State requirements. We want our valued customers to be informed about their water utility. If you have any questions about this report, or want to attend any scheduled meetings or simply want to learn more about your drinking water, please contact KURT SIMONEAUX at 318-586-9836, or visit our web page. www.toledo-bend.net/stbwd

The Louisiana Department of Health and Hospitals - Office of Public Health routinely monitors for constituents in your drinking water according to Federal and State laws. The tables that follow show the results of our monitoring for the period of January 1st - December 31st, 2008. Drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminates does not necessarily indicate that water poses a health risk.

In the table below, you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present.

Parts per million (ppm) or Milligrams per liter (mg/L) - one part per million correspond to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter (ug/L) - one part per billion correspond to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per trillion (ppt) or Nanograms per liter (ng/L) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Parts per quadrillion (ppq) – or Picograms per liter (pg/L) - one part per quadrillion corresponds to one minute in 2,000,000,000 years, or a single penny in \$10,000,000,000,000.

Picocuries per liter (pCi/L) - picocuries per liter is a measure of the radioactivity in water.

Millirems per year (Mrem/yr) - measure of radiation absorbed by the body.

Million Fibers per Liter (MFL) - million fibers per liter is a measure of the presence of asbestos fibers that are longer than 10 micrometers.

Nephelometric Turbidity Unit (NTU) - nephelometric turbidity unit is a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Variances & Exemptions (V&E) - State or EPA permission not to meet MCL or a treatment technique under certain conditions.

Action Level (AL) - the concentration of a contaminant that, if exceeded, triggers treatment or other requirements which a water system must follow.

Treatment Technique (TT) - a treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Maximum Contaminant Level (MCL) - the "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - the "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

During the period covered by this report we had the below noted violations of drinking water regulations.

Type	Category	Analyte	Compliance Period
CCR	Failure to Complete Report/Record	CONSUMER	07/01/08
REPORT	Keeping	CONFIDENCE RULE	

Our water system tested a minimum of 4 samples per month monthly sample(s) in accordance with the Total Coliform Rule for microbiological contaminants. During the monitoring period covered by this report, we had the following noted detections for microbiological contaminants:

Microbiological	Result	MCL	MCL	Typical Source
			G	
COLIFORM	In the month of	MCL: systems that	0	Naturally present in
(TCR)	March, 1 sample(s)	Collect Less Than 40		the environment
	Returned as positive	Samples per Month – No		
		more than 1 Positive		
		monthly sample		

In the tables below, we have shown the regulated contaminates that have detectable levels. These samples, except for Lead and Copper results and surface water systems, were collected at the raw water source and represent water before any treatment, blending or distribution. As such, the consumer tap levels could be less. Chemical Sampling of our drinking water may not be required on an annual basis; therefore, information in this table refers back to the latest year of chemical sampling results.

Regulated	Collection	Highest	Rang	Uni	MC	MCL	Typical Source
Contaminan	Date	Value	e	t	L	G	
ts							
BARIUM	8/27/2007	0.0372	0.037	ppm	2	2	Discharge of drilling wastes;
			2				Discharge from metal refineries'
							Erosion of natural deposits
NITRATE	8/27/2007	0.09	0.09	ppm	10	10	Runoff from fertilizer use;
							Leaching from septic tanks,
							Sewage; Erosion of natural
							deposits
TURBIDITY	2/19/2008	0.59	0.12-	NT	1		
			0.2	U			Soil runoff

Lead	and	Date	90 th	95 th	Unit	AL	Sites	Typical
Copper			Percentile	Percentile			Over AL	Source
No Detec	ted							
Results	were							
Found								
In	the							
Calendar								
Year of 2	800							

Radionuclides	Collection Date	Highest Value	Range	Uni t	MC L	MCL G	Typical Source
No Detected results were Found in the Calendar Year of 2008							

DPB Contaminants	Monitoring Period	RA A	Range	Unit	MCL	MCL G	Typical Source
No Detected results were Found in the Calendar Year of 2008							

Turbidity Insert(Surface Water Only)

Month	Highest Finis	hed/Combined Effluen	at Turbidity (for the month)
January	0.20	July	0.16
February	0.59	August	0.21
March	0.17	September	0.29
April	0.16	October	0.16
May	0.19	November	0.15
June	0.18	December	0.12

Regulated	Collection	Lowest %	Range	Unit	MCL	MCLG	Typical Source
Contaminants	Date	Value					
TURBIDITY	2/2008	99.4	91.9 -	NTU	0.1		
			100				Soil runoff

NOTE: Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system. The major sources of turbidity include soil runoff.

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

+++++Environmental Protection Agency Required Health Effects Language++++++

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, person who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Additional Required Health effects Language:

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.

There are no additional required health effects violation notices.

Thank you for allowing us to continue providing your family with clean, quality water this year. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. Please call our office if you have questions 318-586-9836.

We at the SOUTH TOLEDO BEND WATER DISTRICT work around the clock to provide top quality drinking water to every tap. We ask that all our customers help us protect and conserve our water sources, which are the heart of our community, our way of life, and our children's future.

Kurt Simoneaux, Manager South Toledo Bend Water

South Toledo Bend Water is an Equal Opportunity Provider

srt